Solution:
(c): A person who is on a long hunger strike and is surviving only on water, will have less urea in his urine. Urea, also called carbamide, is an organic chemical compound which essentially is the waste produced when the body metabolizes protein. Manufactured in the liver, by broken down protein or amino acids, and ammonia, the kidneys transfer urea from the blood to the urine. The average person excretes about 30 grams of urea a day. During total starvation with no food being eaten, the body must rely on its own tissues to provide the essential mixture of fuels to sustain life. The primary fuel is stored fat but we also need a continuous supply of glucose. The body has a very small store of glycogen that can provide glucose for about 36 hours, then the body must make its glucose. The body has three sources of glucose, one is the diet (but the person is starving), a second is glycogen (but this is all gone) and the third is a process called gluconeogenesis where the body makes glucose from amino acids. During starvation, the body must rely on body proteins for the amino acids. On high-protein diets the carbon skeletons of the amino acids are oxidized for energy or stored as fat and glycogen, but the amino nitrogen must be excreted. To facilitate this process, enzymes of the urea cycle are controlled at the gene level. When dietary proteins increase significantly, enzyme concentrations rise. On return to a balanced diet, enzyme levels decline. Under conditions of starvation, enzyme levels rise as proteins are degraded and amino acid carbon skeletons are used to provide energy, thus increasing the quantity of nitrogen that must be excreted in the form of urea.
© examsnet.com