Given, 3x=4x−1 On taking log both sides, we get log(3x)=log4(x−1) ⇒xlog3=(x−1)log4[∵logmn=nlogm] ⇒xlog3=xlog4−log4 ⇒xlog3−log4=−log4 ⇒x(log3−log4)=−log4 ⇒−x(log4−log3)=−log4 x=
log4
log4−log3
=
log22
log22−log3
=
2log2
2log2−log3
=
2log2
log3
2log2−log3
log3
[On dividing numerator and denominator by log 3] ⇒x=