Chord AB of the outer circle intersects inner circle at point C and R. OP = 3 cm
Radius of the outer circle = r1 = 13 cm Radius of the inner circle = 7 cm In right triangle OPB, (OP)2+(PB)2 = (OB)2 (3)2+(PB)2 = (13)2 PB2 = 169 − 9 = 160 PB = √160 = 4√10 cm Also ΔOPC = (OC)2 = (OP)2+(PC)2 (7)2 = (3)2+(PC)2 49 - 9 = PC2 PC = √40 = 2√10 cm AP = PB = 4√10 cm CP = PD = 2√10 cm AC = AP − CP AC = 4√10−2√10 AC = 2√10 cm