Given, equation of curves, x2+y2=4 and y2=3x x2+3x−4=0 ⇒‌x2+4x−x−4‌=0. ⇒‌x(x+4)−1(x+4)‌=0 ⇒‌(x+4)(x−1)‌=0 ⇒‌x‌=1   [x≠−4] y=‌±√3 The intersecting points are (1,√3) and (1,−√3) ∴‌‌x2+y2=4 On differentiating w.r.t. x, we get 2x+2y‌