(a,b) is equidistance from 2x+3y+4=0 and 3x−2y+4=0 So, ‌
|2a+3b+4|
√22+32
=‌
|3a−2b+4|
√22+32
⇒‌‌2a+3b+4=±(3a−2b+4) For (+) ve sign, ‌2a+3b+4=3a−2b+4 ⇒−a+5b=0⇒a=5b ⇒‌‌x−5y=0 ‌ For ‌‌(−)‌ ve sign, ‌ ‌2a+3b+4=−(3a−2b+4) ⇒‌‌5a+b+8=0 ⇒‌‌5x+v+8=0