We have slope of tangent ‌=6x2+10x−9 ‌⇒‌
dy
dx
=6x2+10x−9 ‌dy=(6x2+10x−9)‌dx On integrating both sides, we get ∫dy=∫(6x2+10x−9)‌dx y=2x3+5x2−9x+C ‌∵f(2)=0 ‌⇒0=16+20−18+C⇒C=−18 So, y=2x3+5x2−9x−18=f(x) ‌∴f(−2)=2(−2)3+5(−2)2−9(−2)−18 ‌=−16+20+18−18=4