Given quadratic equation, x2−60x+899=0 Roots of the equation are p and q, where p>q x2−60x+899=0 ⇒x2−31x−29x+899=0 ⇒x(x−31)−29(x−31)=0 ⇒(x−31)(x−29)=0 x=31 or 29 Here, p=31 and q=29 [∵p>q] (a) p−q−1=0 p−q−1=31−29−1 =2−1=1≠0 (b) p−2q+27=0 p−2q+27=31−2×29+27 =31−58+27=58−58=0 Hence, (b) is the correct option.