Given points A(1,1),B(0,0), and C(2,0). The angle bisectors meet at P (the incenter). Compute the side lengths: a=BC=√(2−0)2+(0−0)2=2 b=CA=√(1−2)2+(1−0)2=√2 c=AB=√(1−0)2+(1−0)2=√2 Therefore, a+b+c=2+√2+√2=2+2√2. By the incenter formula, XP=