Examsnet
Unconfined exams practice
Home
Exams
Banking Entrance Exams
CUET Exam Papers
Defence Exams
Engineering Exams
Finance Entrance Exams
GATE Exam Practice
Insurance Exams
International Exams
JEE Exams
LAW Entrance Exams
MBA Entrance Exams
MCA Entrance Exams
Medical Entrance Exams
Other Entrance Exams
Police Exams
Public Service Commission (PSC)
RRB Entrance Exams
SSC Exams
State Govt Exams
Subjectwise Practice
Teacher Exams
SET Exams(State Eligibility Test)
UPSC Entrance Exams
Aptitude
Algebra and Higher Mathematics
Arithmetic
Commercial Mathematics
Data Based Mathematics
Geometry and Mensuration
Number System and Numeracy
Problem Solving
Board Exams
Andhra
Bihar
CBSE
Gujarat
Haryana
ICSE
Jammu and Kashmir
Karnataka
Kerala
Madhya Pradesh
Maharashtra
Odisha
Tamil Nadu
Telangana
Uttar Pradesh
English
Competitive English
Certifications
Technical
Cloud Tech Certifications
Security Tech Certifications
Management
IT Infrastructure
More
About
Careers
Contact Us
Our Apps
Privacy
Test Index
UPSC NDA Math Model Paper 10
Show Para
Hide Para
Share question:
© examsnet.com
Question : 9
Total: 120
If the product of first three terms of a GP is 216 and their sum is 19, then find common ratio r such that r > 1 .
7/6
13/6
2/3
3/2
Validate
Solution:
Lets three terms of GP be a/r, a, ar
Given: The product of first three terms of GP = 216 and their sum is 19
⇒
a
r
×
a
×
a
r
=
125
⇒
a
3
=
216
⇒
a
=
6
According to second statement,
⇒
a
r
+
a
+
a
r
=
19
⇒
a
(
1
r
+
1
+
r
)
=
19
Put the value of
a
=
6
in the above equation
⇒
6
(
1
r
+
1
+
r
)
=
19
⇒
6
+
6
r
+
6
r
2
=
19
r
⇒
6
r
2
−
13
r
+
6
=
0
⇒ (3r - 2) × (2r - 3) = 0
⇒ r = 2/3 or 3/2
As it is given that r > 1
Hence common ratio r = 3/2.
© examsnet.com
Go to Question:
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
Prev Question
Next Question