Here, we have to find the value of log3log3√3√3 Now, log3log3√3√3=log3log3(31∕2×31∕4) =log3log3(3(1∕2+1∕4)) =log3log3(3(2+1)∕4) =log3log3(33∕4) From power rule; =log3[(3∕4)×log33][∵loga(m)n=n×loga(m)] =log3(3∕4)(∵logmm=1) =log3(3∕4)=log33−log34 =1−log34=1−log322 =1−2log32