Let us consider B = 18° So, 5B = 90° ⇒ 2B + 3B = 90° ⇒ 2B = 90° - 3B By taking sine on both sides, we get Sin 2B = sin (90° - 3B) = cos 3B ⇒ 2 sin B cos B = 4 cos3 B - 3 cos B ⇒ 2 sin B cos B - 4 cos3 B + 3 cos B = 0 ⇒ cos B (2 sin B - 4 cos B + 3) = 0 Dividing both sides by cos B = cos 18˚ ≠ 0, we get ⇒ 2 sin B - 4 (1 - sin B) + 3 = 0 ⇒ 4 sin B + 2 sin B - 1 = 0 This is a quadratic equation in Sine, So, sinB=
−2±√4+16
2×4
=
−1±√5
4
Now since 18° is first quadrant so sin18° is positive Therefore, sinB=