Given: sin2θ=cos3θ,0<θ<π∕2. As we know that, sin2θ=2sinθcosθ and cos3θ=4cos3θ−3cosθ. ⇒2sinθcosθ=4cos3θ−3cosθ ⇒2sinθ=4cos2θ−3 ⇒2sinθ=4(1−sin2θ)−3=4−4sin2θ−3 ⇒4sin2θ+2sinθ−1=0 Comparing the above equation with quadratic equation ax2+bx+c=0,a=4,b=2 and c=−1 Now substituting the values in the quadratic formula x=(−b±√b2−4ac)∕2a we get, sinθ=
−2±√−22−4(4)(−1)
2(4)
=
−2±√4+16
8
=
−2±√20
8
=
−1±√5
4
Thus, sinθ=
−1±√5
4
. Since, 0 < θ < π/2 ⟹ θ lies between 0° to 90°⟹ all ratios are positive. ⇒sinθ=
−1+√5
4
As we know that, cos2θ=cos2θ−sin2θ=1–2sin2θ ⇒cos2θ=1−2(