(cosx−sinx) =−sinx−cosx =−(sinx+cosx) Here, f’’(x) < 0, so given function is maxima ∴ f’(x) = 0 ⇒cosx−sinx=0 ⇒cosx=sinx We know at x = π/4, sin x = cos x f (x) = sin x + cos x = sin x + sin x (∵ sin x = cos x) = 2 sin x F(π/4) = 2 sin(π/4) =2(
1
√2
) Divide and multiply by √2 , we get =√2 Hence, option (2) is correct.