(cosâxâsinâx) =âsinâxâcosâx =â(sinâx+cosâx) Here, fââ(x) < 0, so given function is maxima â´ fâ(x) = 0 âcosâxâsinâx=0 âcosâx=sinâx We know at x = Ď/4, sin x = cos x f (x) = sin x + cos x = sin x + sin x (âľ sin x = cos x) = 2 sin x F(Ď/4) = 2 sin(Ď/4) =2(
1
â2
) Divide and multiply by â2 , we get =â2 Hence, option (2) is correct.