Let p(x1,y1) be any point on the circle x2+y2+2gx+2fy = c = 0 Then , the length of the tangents drawn from p(x1,y1) to the circle x2+y2 + 2gx + 2fy + csin2α+(g2+f2)cos2α = 0 is PQ = PR
=
√[x12+y12+2gx1+2fy1+csin2α+(g2+f2)cos2xα]
= √−x+csin2α+(g2+f2)cos2α = √g2+f2−c cos α The radius of the circle x2+y2 + 2gx + 2fy = csin2α + (g2+f2)cos2α = 0 is CQ = CR = √g2+f2−csin2α−(g2+f2)cos2α = √g2+f2−csinα In ΔPQC , tan θ =