Given: 2|x+2|−|2x+1−1| = 2x+1+1 To solve, the given equation using definition of modulus function, we will consider two cases Case I : (x + 2) ≥ 0 ⇒ 2x+2−|2x+1−1| = 2x+1+1 ⇒ (2x+1.21−2x+1) - 1 = |2x+1−1| ⇒ 2x+1−1 = |2x+1−1| above relation holds true only if x ≥ - 1 Case II : (x + 2) ≤ 0 ⇒ 2−x−2−(1−2x+1) = 2x+1+1 ⇒ 2−x−2 = 2 ⇒ - x - 2 = 1 ⇒ x = - 3 ∴ Combing two cases, solution set of the given equation is x ≥ - 1 , x = - 3. Hence, option 'A' is correct.