CBSE Class 12 Math 2009 Solved Paper

© examsnet.com
Question : 17
Total: 29
Prove that: sin−1(
4
5
)
+sin−1(
5
13
)
+ sin−1(
16
65
)
=
Ï€
2

OR
Solve for x: tan−13x+tan−12x =
Ï€
4
Solution:  
To prove: sin−1(
4
5
)
+sin−1(
5
13
)
+ sin−1(
16
65
)
=
Ï€
2

Let sin−1(
4
5
)
= x
⇒ sin x =
4
5

⇒ cos x = √1−sin2x =
3
5

sin−1(
5
13
)
= y
⇒ sin y =
5
13

⇒ cos y = √1−sin2y =
12
13

sin−1(
16
65
)
= z
⇒ sin z =
16
65

⇒ cos z = √1−sin2x =
63
65

tan x =
4
3
, tan y =
5
12
, tan z =
16
63

tan z =
16
63
⇒ cot z =
63
16
... (1)
tan (x + y) =
tan(x+y)
1−tanx.tany

⇒ tan (x + y) =
4
3
+
5
12
1−
20
36

⇒ tan (x + y) =
63
16

⇒ tan (x + y) = cot z ... [from equation (1)]
⇒ tan (x + y) = tan (
Ï€
2
−z
)

⇒ x + y =
Ï€
2
- z
⇒ x + y + z =
Ï€
2

∴ sin−1(
4
5
)
+sin−1(
5
13
)
+ sin−1(
16
65
)
=
Ï€
2

OR
tan−13x+tan−12x =
Ï€
4

⇒ tan−1(
5x
1−6x2
)
=
Ï€
4
. 3x × 2x < 1
⇒ tan [tan−1(
5x
1−6x2
)
]
= tan
Ï€
4

⇒
5x
1−6x2
= 1
⇒ 1 - 6x2 = 5x
⇒ 6x2 + 5x - 1 = 0
⇒ 6x2 + 6x - x - 1 = 0
⇒ x = - 1 or
1
6

Here (- 3) × (- 2) ≮ 1 [Since (- 3) × (- 2) = 6 >1]
Therefore, x = 1 is not the solution.
When substituting x =
1
6
in 3x 2x, we have,
3 ×
1
6
× 2 ×
1
6
=
1
2
×
1
3
=
1
6
< 1
Hence x =
1
6
is the solution of the given equation
© examsnet.com
Go to Question: